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Brief Overview of Deep Neural Networks
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Model inversion
Adversarial examples

Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, ACM SIGSAc 2015

Model extraction

Poisoning

Attacks Against Deep Neural Networks
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 Obtain a copy of the targeted DNN Stealing the Intellectual Property Possibility to mount more powerful attack on the targeted DNN 3 broad methodologies
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Target

Prediction : 2, 1,7

Training on the output of the targeted model

 Obtain a copy of the targeted DNN Stealing the Intellectual Property Possibility to mount more powerful attack on the targeted DNN 3 broad methodologies Active learning [1]

Model Extraction: State-Of-The-Art
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Target
Infer information by comparingfaulted predictions with correct ones

Prediction : 7

 Obtain a copy of the targeted DNN Stealing the Intellectual Property Possibility to mount more powerful attack on the targeted DNN 3 broad methodologies Active learning [1] Hardware attacks (Fault Injection [2] or Side Channel [3])
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 Obtain a copy of the targeted DNN Stealing the Intellectual Property Possibility to mount more powerful attack on the targeted DNN 3 broad methodologies Active learning [1] Hardware attacks (Fault Injection [2] or Side Channel [3]) Cryptanalytical extraction[4, 5, 6]
• Analogy between the weights and the key
• Input becomes the message
• Output is equivalent to cipher text
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Model Extraction: Cryptanalysis
 Special case of networks using ReLU function

Z < 0 : Stateinactive

Z > 0 : Stateactive

ReLU(x) = max(0,x)
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Z < 0 : State inactive

Z > 0 : State active
𝜽𝟏𝑿𝟏+ 𝜽𝟐𝑿𝟐 = 𝟎

X1

X2

Model Extraction: Cryptanalysis
 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis
 Special case of networks using ReLU function
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X1

X2

Model Extraction: Cryptanalysis
 Special case of networks using ReLU function
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Model Extraction: Cryptanalysis
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X1
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Model Extraction: Cryptanalysis
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X1

X2

Model Extraction: Cryptanalysis
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X1

X2

Model Extraction: Cryptanalysis
 Special case of networks using ReLU function
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Complexity of Linear Regions in Deep Networks, ICML 2019

Model Extraction: Cryptanalysis
 Special case of networks using ReLU function
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V1

V2

Model Extraction: Cryptanalysis
 Special case of networks using ReLU function
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With :- the weights of the targeted neuron 𝜂- the bias of the targeted neuron 𝜂- the activations values of the previous layerassociated with input
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 Global methodology
 Search for points on thehyperplanes: the critical points

V1

V2

Model Extraction: Cryptanalysis
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V1

V2

Model Extraction: Cryptanalysis
 Global methodology

 Search for points on thehyperplanes: the critical points
 Retrieve the equations of thehyperplane and the weights
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V1

V2

Model Extraction: Cryptanalysis
 Global methodology

 Search for points on thehyperplanes: the critical points
 Retrieve the equations of thehyperplane and the weights

 Get the sign of the neuron

SemSecuElec 2025Hard-Label Cryptanalytic Extraction of DNNs



23

 Search for the critical points is thecrucial step Highly dependent on the gradient
 Current limitations

Issue Solution
Hard-label settings Adaptation with dual points
Restriction to fullyconnected layers None

Special cases of neurons None

V1

V2

Model Extraction: Cryptanalysis
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Model Extraction: Side-Channel
 ReLU implementation ARM CMSIS-NN, open source

Z < 0 : State inactiveMask : 00000000

Z > 0 : State activeMask : 11111111

V1

V2
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 Different states have different electromagnetic traces

Z < 0 : State inactiveMask : 00000000

Z > 0 : State activeMask : 11111111

V1

V2

Model Extraction: Side-Channel
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Model Extraction: Our Method
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Model Extraction: Our Method
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Model Extraction: Our Method
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Model Extraction: Our Method
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Model Extraction: Target
 Targeted DNN Truncated version ofMobileNetv1 11 layers (Depthwise Separableconvolutions + batchnorm +ReLU)
 Hardware STM32F767ZI X-Cube-AI
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Model Extraction: Results
 State extraction for 15 neurons in a layer Signal to noise ratio on the state of the neuron

 Success rate in one EM trace: 86.3% (k-means algorithm)
SemSecuElec 2025Hard-Label Cryptanalytic Extraction of DNNs
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 Metrics used for classifier: Fidelity, Accuracy Under Attack and Number ofqueries
 Fidelity: percentage of label agreement between the stolen and the targetedmodel (different from accuracy)
 Accuracy Under Attack: transfer rate of adversarial examples generated on thestolen model to the target
 Number of queries: number of random queries made to the targeted model(results are given under the assumption that the state of the neuron isobtained in one trace)

Model Extraction: Results
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 Metrics used for classifier: Fidelity, Accuracy Under Attack and Number ofqueries

 One query corresponds to a prediction made by the model on randomdata (220  ~ 1 000 000)

Architecture Parameters Number of queries Fidelity Accuracy Under Attack
3072-256-256-256-64-10 935 370 226.2 97.2% 98.6%
3072-512-256-64-10 1 721 802 226.0 93.2% 96.7%

TruncatedMobileNetv1 5 234 218.8 88.4% 95.7%

Model Extraction: Results
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 Results from simulation with 64-bits data for regression tasks

 One query corresponds to a prediction made by the model on randomdata (220  ~ 1 000 000;       2−41  ~ 4 × 10−13)

Architecture(Regression task) Parameters Number of queries 𝒎𝒂𝒙 𝜃−𝜃
784-128-1 100 480 222.6𝟐𝟐𝟏.𝟓 [5] 𝟐−𝟒𝟎.𝟖2−29.4 [5]
10-20-20-1 620 𝟐𝟏𝟓.𝟔217.1  [5] 𝟐−𝟒𝟔.𝟓2−37 [5]

40-20-10-10-1 1 110 𝟐𝟏𝟔.𝟖217.8 [5] 𝟐−𝟒𝟐.𝟎2−27.1 [5]

x2
x4
x2

x2 700

x700
x32 000

Model Extraction: Results
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Conclusion
 Conclusion Fidelity-based model extraction of a complex DNN in hard-label settings Complementarity between hardware and software attacks Paper under review Extend this work on more complex architecture Evaluate the impact of the data representation on the attack
 ST was noticed in September 2024
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 Complete results with 32-bit data
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 Complete results with 64-bit data
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