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Introduction

• This work is part of the Resilient Trust project
and is a collaboration between Almende and Synopsys

• EU’s Horizon Europe research and innovation program under grant agreement No. 101112282

• Resilient Trust in short:
– Increase SMEs security
– 25 partners
– 4 Use Cases
– Started in Oct. 2023, until October 2026

• Part of this work was done by Rehan Malak while still at Synopsys

Develops the SRAM PUF IP Develops Crownstone, a smart power outlet
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Agenda

• Context and motivations
– Firmware Over-The-Air Updates
– Typical Secure Boot Flow

• SRAM PUF Overview
– What is a PUF
– Synopsys PUF-Software

• Improved Secure Boot Flow (with SRAM PUF)
– Chosen approach
– Performances and code size metrics

• Secure Boot Flow for Crownstone IoT devices
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Context and motivations
- Firmware Over-The-Air Updates
- Typical Secure Boot Flow
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Context and motivations

• Over-the-air firmware updates

• Network of resource-constrained IoT devices
– E.g. Arm Cortex-M0+ or Cortex-M4
– Small quantity of RAM

• Need to protect against:
– Malicious firmware updates
– IP theft
– Device cloning

 Secure boot
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Secure Boot

• Chain of trust

• Ensures
– Authenticity (firmware signature)
– Integrity (firmware hashing)
– Confidentiality (firmware encryption)
of a firmware image

• Critical part of a security architecture

• MCUboot
– Open-source secure bootloader for 32-bits microcontrollers
– Reference bootloader for the ARM PSA framework
– Provides support for firmware upgrades
– Configurable, many options
– Uses Mbed TLS or Tinycrypt as a crypto library

(we chose Mbed TLS for this work)

Signed 
firmware

Verification?

App 1

App 2

App 3
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Typical Secure Boot Flow
MCUboot flow with encryption and ECDSA signature

1. Decrypt the firmware

2. Verify the hash

3. Verify the signature

• 2 main security assets:
– AES firmware encryption key
– ECDSA signature public key

Enc(image)

Signature

Compute 
Hash

=
? Pass/fail

Check  
integrity

Check  
authenticity

TLVs (FW + metadata)

Hash(Image)

Hash(Key)

AES 
SymK

Decrypt 

 Image

Verify 
Signature Pass/fail

ECDSA 
PubK

Hash(Key)

Decrypt
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Main limitations

• Devices can easily be cloned
 Just dump the Flash, which contains the public key

• Encrypted firmware images can easily be decrypted
 The firmware symmetric key is stored in plain in Flash

• Verifying an ECDSA signature takes a lot of time
 E.g. on a Cortex-M0+ (STM32G070RB), with a basic unencrypted “Hello world” firmware payload

 Can we improve this ?

On a standard MCU system, without a secure enclave

Scenario Time to boot Time (at 64 MHz) Code size 
Mbed TLS
Standard ECDSA flow

~62M clock cycles ~1s 43 kB
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Main limitations
On a standard MCU system, without a secure enclave

Scenario Time to boot Time (at 64 MHz) Code size 
Mbed TLS
Standard ECDSA flow

~62M clock cycles ~1s 43 kB

• Devices can easily be cloned
 Just dump the Flash, which contains the public key

• Encrypted firmware images can easily be decrypted
 The firmware symmetric key is stored in plain in Flash

• Verifying an ECDSA signature takes a lot of time
 E.g. on a Cortex-M0+ (STM32G070RB), with a basic unencrypted “Hello world” firmware payload

 Can we improve this ?
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SRAM PUF overview
PUF, SRAM PUF and Synopsys PUF-Software
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What is PUF?
A Silicon Fingerprint

A Physical Unclonable 
Function

A Physical Object 
which uses its 

Unclonable Physical Properties 
to create a 

Unique Identifier

Intrinsic Security

100001011101100100011101101110110
101000111011011000001011010001111
011001100101100110011110111011011
000010011101101011110001110000101
110110010001110110111011010100011
101101100000101101000111101100110
010110011001111011101101100001001
110110101111000111011000111011001
011001110100000101110000101000111
011001110001110110110001110110010
110011101

Benefits of PUF-based 
IDs/Keys 
• Device-unique ID and keys
• Key not known outside the SoC
• Unclonable
• Not stored

Ideal for 
• Tracking
• Identification / authentication
• Anti-counterfeiting
• Protection against reverse-

engineering

• SRAM, ring-oscillator
• Optical, Via, Quantum, 

Magnetic, … 

Various Types
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PUF: Foundational Security
Keeping Secrets Secret and Data Secure

PUF

PUF Root Key

Encrypt data
(AI parameters/models, sensor data)  

Vault for keys 
(used in other applications; e.g. eWallet)

Authentication with other 
systems or cloud

Bind FW IP to the SoC
(secure boot)

FW IP
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SRAM PUF – Keys from Silicon Fingerprint

Process Variation

Deep sub-micron variations in the 
production process give every transistor 
slightly random electric properties

1

When the SRAM is powered on this 
randomness is expressed in the start-up 
values (0 or 1) of SRAM cells

SRAM Power-up Values2

• Device-unique, unclonable fingerprint • Leverages entropy of mfg. process • No key material programmed
SRAM PUF Benefits

SRAM PUF Key
The silicon fingerprint is turned into 
a secret key that builds the 
foundation of a security subsystem

4

The power-up values create a 
highly random and repeatable 
pattern that is unique to each chip

Silicon Fingerprint

3
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Synopsys PUF-Software

• Software library, uses standard SRAM as a PUF to create a hardware-based trust anchor 

• Main features:
– Device-unique ID
– Key provisioning
– Secure key storage
– Symmetric and asymmetric key cryptography
– Random number generation (NIST SP 800-90A/B)

 

 

PUF Enrollment – One-Time Process (at device provisioning)

R’ Synopsys 
PUF - Software

SRAM PUF

Key Reconstruction – In the Field

Device-unique key

R Synopsys 
PUF - Software

SRAM PUF Activation Code (AC)

PUF + Crypto Library



© 2025 Synopsys, Inc. 15

Wrap keys using Synopsys PUF-Software

• Root keys are re-created from the PUF each time they are needed  never stored
    stronger protection than traditional key storage in NVM

• We use these PUF root keys to wrap other keys

• Wrapping = encrypt + MAC + binding to the device

PUF-SWunwrap

With a key code retrieve a stored key

Key Code Plain Key

wrap PUF-SW

With a key create a keycode to securely store it

Plain Key Key Code
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Improved Secure Boot Flow
Use SRAM PUF to improve the standard secure boot flow
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Typical Secure Boot Flow
MCUboot flow with encryption and ECDSA signature

1. Decrypt the firmware

2. Verify the hash

3. Verify the signature

• 2 main security assets:
– AES firmware encryption key
– ECDSA signature public key

Enc(image)

Signature

Compute 
Hash

=
? Pass/fail

Check  
integrity

Check  
authenticity

Hash(Image)

Hash(Key)

AES 
SymK

Decrypt 

 Image

Verify 
Signature Pass/fail

ECDSA 
PubK

Hash(Key)

Decrypt

TLVs (FW + metadata)
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General ideas

1. Protect the firmware encryption key
Wrap the symmetric key using PUF-SW (easy)

a) The network owner generates a symmetric key
b) They distribute it to each device during provisioning
c) Each device wraps the key with its own PUF

2. Prevent cloning
Wrap the public key using PUF-SW (easy)

a) The network owner generates a public/private key pair
b) They distribute the public key to each device during provisioning
c) Each device wraps the key with its own PUF

3. Improve performance (medium)
MAC = symmetric signature
Use an HMAC in place of the ECDSA signature
(and provide a solution to securely store the HMAC key)

AES 
SymK

 Wrapped

ECDSA 
PubK

 Wrapped

AES 
SymK

ECDSA 
PubK

Signature MAC

Verify 
Signature Verify MAC

ECDSA 
PubK

 Wrapped

HMAC 
SymK

 Wrapped
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Improved secure boot flow
Encryption, ECDSA signature, keys wrapped with PUF-SW

First, the two easy steps

Keys wrapped with PUF-SW at 
provisioning phase:

• Encryption symmetric key
• Signature public key

Pros
• Simple
• Protects against cloning
• Protects the two keys

Cons
• Slow boot sequence

Enc(image)

Signature

Compute 
Hash

=
? Pass/fail

Check  
integrity

Check  
authenticity

Hash(Image)

Hash(Key)

AES 
SymK

Decrypt 

Decrypt  Image

Verify 
Signature Pass/fail

ECDSA 
PubK

Hash(Key)

 Wrapped

 Wrapped

TLVs (FW + metadata)
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Improved secure boot flow
Naïve approach with HMAC

Pros
• Faster
• Simple
• Protects against cloning
• No need for asymmetric 

crypto (smaller code size)

Cons
• Common key for all devices
• If the key is compromised, 

attackers can forge valid 
firmware images

Overall
Too big of a risk

Enc(image)

MAC

Compute 
Hash

=
? Pass/fail

Check  
integrity

Check  
authenticity

Hash(Image)

Hash(Key)

AES 
SymK

Decrypt 

Decrypt  Image

Verify MAC Pass/fail

HMAC 
SymK

Hash(Key)

 Wrapped

 Wrapped

TLVs (FW + metadata)
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Improved secure boot flow
Hybrid approach, ECDSA + HMAC
At first boot sequence (verification)

• ECDSA at first verification

• Generate a device-unique MAC 
key (and wrap it)

• Compute a MAC and store it next 
to the FW image

• Use the MAC for subsequent 
boot sequences

Pros
• Still fast
• Protects against cloning
• Device-unique MAC key

Cons
• Still requires asymmetric 

crypto

Overall
We get the best of both worlds

Enc(image)

Compute 
Hash

=
? Pass/fail

Check  
integrity

Hash(Image)

Hash(Key)

AES 
SymK

Decrypt 

Decrypt  Image

Verify 
Signature Pass/fail

ECDSA 
PubK

Hash(Key)

 Wrapped

 Wrapped

Signature

MAC

Generate HMAC key 
and compute MAC
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Improved secure boot flow
Hybrid approach, ECDSA + HMAC
After first boot sequence

• ECDSA at first verification

• Generate a device-unique MAC 
key (and wrap it)

• Compute a MAC and store it next 
to the FW image

• Use the MAC for subsequent 
boot sequences

Pros
• Still fast
• Protects against cloning
• Device-unique MAC key

Cons
• Still requires asymmetric 

crypto

Overall
We get the best of both worlds

Enc(image)

Compute 
Hash

=
? Pass/fail

Check  
integrity

Hash(Image)

Hash(Key)

AES 
SymK

Decrypt 

Decrypt  Image

Verify MAC Pass/fail

HMAC 
SymK

Hash(Key)

 Wrapped

 Wrapped

Signature

MAC

ECDSA 
PubK

 Wrapped
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Efficient secure boot flow with SRAM PUF
Performance figures and code size

• On a Cortex-M0+: 
STM32G070RB, with a basic unencrypted “Hello world” firmware payload

• This solution has also been implemented on other STM32 devices (Cortex-M0 and Cortex-M33)

Scenario Time to boot Time (at 64 MHz) Code size 
Mbed TLS
Standard ECDSA flow

~62M clock cycles ~1s 43 kB

Synopsys PUF-SW
Same flow, faster crypto lib

~15M clock cycles ~250ms 42 kB

Synopsys PUF-SW HMAC
Hybrid HMAC flow, 
after first verification

~600k clock cycles ~10ms 20 kB (HMAC-only)
42 kB (hybrid)
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Secure Boot Flow for 
Crownstone IoT devices
- Crownstone IoT device
- Lightweight Secure Boot Flow
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Crownstone IoT device
Smart power outlet

• Nordic nRF52832 SoC
– 2.4 GHz transceiver
– Arm Cortex-M4 (32-bit, 64 MHz)
– 512 kB flash/64 kB RAM

• Use cases:
– Indoor localization
– Power Outlet Management

• Initially developed for private use (home), 
now moving to large office space



© 2025 Synopsys, Inc. 26© 2025 Synopsys, Inc. 26

Secure Boot Flow for Crownstone
Encryption, ECDSA signature, keys wrapped with PUF-SW

Keys wrapped with PUF-SW at 
provisioning phase:

• Encryption symmetric key
• Signature public key

Devices always on
 boot-time perf not an issue
 no HMAC-hybrid approach 

Enc(image)

Signature

Compute 
Hash

=
? Pass/fail

Check  
integrity

Check  
authenticity

Hash(Image)

Hash(Key)

AES 
SymK

Decrypt 

Decrypt  Image

Verify 
Signature Pass/fail

ECDSA 
PubK

Hash(Key)

 Wrapped

 Wrapped
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Conclusion
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Conclusion

• Yes, we can improve the typical IoT secure boot flow with SRAM PUF

• Using SRAM PUF in an IoT secure boot flow brings benefits:
– Binds cryptographic key material to a device
– Secure key storage without a secure vault
– Faster boot time by using symmetric crypto
– Protection against firmware cloning

• Next steps in Resilient Trust:
– Continue the integration of PUF-SW on the Crownstone device
– Have a first integration working by the end of the year



Thank you
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