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Fault injections are already way out of the comfort zone
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Precise attack models are low-level and tricky

Fetch skips by Alshaer et al. [Als+22]

c.addi a0, a0, 1 lw a0, 144(a1)

(lw cont.) c.ret

▼ Skip 32 bits!

c.addi a0, a0, 1 lw a0, 144(a1)

addi s2, s2, 1 c.ret

▶ Found on ARM and RISC-V
▶ Can corrupt instructions
▶ Can affect more than one instruction

Typical abstraction compromise!
▶ Brings in pipeline details
▶ More precise than instruction skip
▶ Harder to deal with
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But co-design can deal with them!
Paper: From low-level fault modeling to a proven hardening scheme — CC’24 [MDG24]

Co-designed countermeasure with nice properties!

▶ Simple implementation on both ends
▶ HW computes checksum of executed opcodes
▶ SW tests it before every jump

▶ Formalized and proven
▶ Attacks will crash or be detected quickly

▶ Reasonable performance
▶ For a strong attacker, 10% time, 2.5x space
▶ Usual instruction skip CM are 4x time/space
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Still, we can’t be just low-level.

The security property is just “normal behavior or exception”.
▶ What about denial of service? Real-time violations? Data leaks?
▶ Also not everything needs to be protected...

Requirement:
▶ Source should be able to provide security annotations.

Often missing at the SW/HW interface
▶ Most hardware countermeasures against faults only do functionality
▶ Also a social problem!
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Semantics and secure compilation
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There is an abstraction gap between attacks and requirements...
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... which only the compiler can properly deal with.

Typically:
▶ Harden everything; no control from source code like annotations
▶ Harden close to source; no control of assembly (and pray for -O0 to work)
▶ Tricks to avoid breakage: volatile abuse, inline assembly, disable passes...

Glaringly insufficient: subtle bugs, no formal guarantees, always a pain.

Tracing LLVM: extension of LLVM, currently focused on RISC-V
▶ Adds semantic tools that preserve and trace elements of the program
▶ (Ongoing) Provides an API for querying and accessing traced objects
▶ Is intended to be used as a “countermeasure toolbox”
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Tracing demo #1: types

Types capture data-flow and are very strong in C and LLVM IR!

unsigned char ! __attribute__((trace(dataflow))) cardPin[4];

▶ Traced type constructor “T!”—secretly the identity
▶ Here we trace the downstream dataflow of cardPin

What does this do?
▶ Taint expressions that depend on cardPin in the front-end
▶ Generate code that can’t be rewritten without explicit approval
▶ Tag until Machine IR, where we can cleanup all relevant registers
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Tracing demo #2: wrappers

int ! __attribute__((trace(writes))) valid;
valid = FALSE;

▶ Traces writes to valid, requiring that they occur exactly as written

LLVM IR

simplewrapper void 1 2 closed ; hides the store
store i32 85, ptr %valid

RISC-V Assembler

li a0, 85

▶ ... and optimizations cannot touch this even if we enable them!
* except some late back-end locations where there are no wrappers
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Getting strong countermeasures from tracing
(work currently under review)

I use Tracing LLVM to build a secure verifyPIN function with:
▶ Basic data-flow integrity (double loads)

→ Source

▶ Basic control-flow integrity (Step Counter Incrementation)

→ Source

▶ All sensitive data allocated in registers

→ Assembly

▶ Sensitive registers zeroed at exit of function

→ Assembly

Can have both source annotations and precise assembly code!
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Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!
2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

Take-away messages!
▶ Use the compiler to connect high-level requirements to low-level secure code
▶ Position: we should also do that with SW/HW co-design!

Questions?
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Related work

▶ Son Tuan Vu’s Ph.D [Vu21] (with Karine Heydemann)
much of the same pitch, but only preserves passive observations—within the semantics

▶ The Correctness-Security Gap in Compiler Optimization [DPS15] (2015);
What You Get is What You C [SCA18] (2018)
earlier dives into the fundamental challenges in secure compilation

▶ CompaSeC [Gei+23] (a combined control- and data-flow protection)
showcases how hard it is to compose countermeasures, thus the need to prove
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Fetch skips hardening: validation

MiBench benchmarks
1. Exhaustive skip
2. Exhaustive double-skip
3. Exhaustive skip-and-repeat
R. 2000 random multi-faults

Attack succeeded (0)
Attack detected (∼75%)
Segfault
Other crash

▶ 9 programs, 32’000 attacks reached, 0 bypass (0 checksum collision)
▶ Cost: ∼10% time, average x2.46 space (similar work: x5 time and space)

These are very good because of the software/hardware combo!
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Fetch skips hardening implementation

▶ Fetch Skips Hardening is presented as an assembly transform, but...

clang

C source code

LLVM

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
GNU ld

Executable code

MachineFunctionPass: adds orange/red blocks

Static relaxation: code size bounded
Emitter: Late jump expansion + relocation emission

Relocation: Checksum computation + some fixing
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Model of multi-pass hardening

Security propertiesHardening process
Programmer

C source code

Compiler

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Linker

Executable code

Security annotation

Start hardening

Continue hardening

Finish hardening

Lower annotations

Lower annotations,
preserve security

Lower annotations,
preserve security

satisfies
S1

“well-annotated”

satisfies
S2

satisfies
S3

...

satisfies
SN

“resists attack”
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Security properties of fetch skips hardening

Psrc P1 P2 P3 P4 P5 Pexe

True True Blocks have
exit widgets
(MachineIR)

True Blocks have
exit widgets
(MachineIR)

Exit widgets
(relocations)

Exit widgets
(checksums)

After fetch skip,
stops before end of block

Front-end
Middle-end FSH

provable

Relaxation

???

FSH-verif

recovers

Emitter Linker

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

implies

▶ Almost never talks about fetch skips.
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... leading to some of the most robust guarantees

▶ To reason about the attack, extend the semantics of assembler!
▶ Describe how fetches work to clear the abstraction gap

▶ Fetch rules (right): describe fetches + attacks
▶ Step rules (not shown): decoding/execution

Proven security guarantee

If you fetch skip, the program will stop/crash before
the end of the current block.
Multi-fault attacks too (unless checksum collision—
usually impossible).

NOFAULT

(PC, ρ) a ⇒ [a] (PC, [a])

S32(k) 1 < k ≤ N

(PC, ρ) a ⇒ [a+ 4k] (PC + 4k, [a+ 4k])

S&R32 ρ ̸= [a]

(PC, ρ) a ⇒ ρ (PC, [a])
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