
SRAM PUF for secure firmware
updates of IoT devices

Noemie Beringuier-Boher, Roel Maes, Nicolas Moro, Sander Steeghs-
Turchina, Peet van Tooren, Andries Stam

PHISIC 2025 Workshop, May 20-21, 2025

© 2025 Synopsys, Inc. 2

Introduction

• This work is part of the Resilient Trust project
and is a collaboration between Almende and Synopsys

• EU’s Horizon Europe research and innovation program under grant agreement No. 101112282

• Resilient Trust in short:
– Increase SMEs security
– 25 partners
– 4 Use Cases
– Started in Oct. 2023, until October 2026

• Part of this work was done by Rehan Malak while still at Synopsys

Develops the SRAM PUF IP Develops Crownstone, a smart power outlet

© 2025 Synopsys, Inc. 3

Agenda

• Context and motivations
– Firmware Over-The-Air Updates
– Typical Secure Boot Flow

• SRAM PUF Overview
– What is a PUF
– Synopsys PUF-Software

• Improved Secure Boot Flow (with SRAM PUF)
– Chosen approach
– Performances and code size metrics

• Secure Boot Flow for Crownstone IoT devices

© 2025 Synopsys, Inc. 4

Context and motivations
- Firmware Over-The-Air Updates
- Typical Secure Boot Flow

© 2025 Synopsys, Inc. 5© 2025 Synopsys, Inc. 5

Context and motivations

• Over-the-air firmware updates

• Network of resource-constrained IoT devices
– E.g. Arm Cortex-M0+ or Cortex-M4
– Small quantity of RAM

• Need to protect against:
– Malicious firmware updates
– IP theft
– Device cloning

 Secure boot

© 2025 Synopsys, Inc. 6

Secure Boot

• Chain of trust

• Ensures
– Authenticity (firmware signature)
– Integrity (firmware hashing)
– Confidentiality (firmware encryption)
of a firmware image

• Critical part of a security architecture

• MCUboot
– Open-source secure bootloader for 32-bits microcontrollers
– Reference bootloader for the ARM PSA framework
– Provides support for firmware upgrades
– Configurable, many options
– Uses Mbed TLS or Tinycrypt as a crypto library

(we chose Mbed TLS for this work)

Signed
firmware

Verification?

App 1

App 2

App 3

© 2025 Synopsys, Inc. 7© 2025 Synopsys, Inc. 7

Typical Secure Boot Flow
MCUboot flow with encryption and ECDSA signature

1. Decrypt the firmware

2. Verify the hash

3. Verify the signature

• 2 main security assets:
– AES firmware encryption key
– ECDSA signature public key

Enc(image)

Signature

Compute
Hash

=
? Pass/fail

Check
integrity

Check
authenticity

TLVs (FW + metadata)

Hash(Image)

Hash(Key)

AES
SymK

Decrypt

 Image

Verify
Signature Pass/fail

ECDSA
PubK

Hash(Key)

Decrypt

© 2025 Synopsys, Inc. 8

Main limitations

• Devices can easily be cloned
 Just dump the Flash, which contains the public key

• Encrypted firmware images can easily be decrypted
 The firmware symmetric key is stored in plain in Flash

• Verifying an ECDSA signature takes a lot of time
 E.g. on a Cortex-M0+ (STM32G070RB), with a basic unencrypted “Hello world” firmware payload

 Can we improve this ?

On a standard MCU system, without a secure enclave

Scenario Time to boot Time (at 64 MHz) Code size
Mbed TLS
Standard ECDSA flow

~62M clock cycles ~1s 43 kB

© 2025 Synopsys, Inc. 9

Main limitations
On a standard MCU system, without a secure enclave

Scenario Time to boot Time (at 64 MHz) Code size
Mbed TLS
Standard ECDSA flow

~62M clock cycles ~1s 43 kB

• Devices can easily be cloned
 Just dump the Flash, which contains the public key

• Encrypted firmware images can easily be decrypted
 The firmware symmetric key is stored in plain in Flash

• Verifying an ECDSA signature takes a lot of time
 E.g. on a Cortex-M0+ (STM32G070RB), with a basic unencrypted “Hello world” firmware payload

 Can we improve this ?

© 2025 Synopsys, Inc. 10

SRAM PUF overview
PUF, SRAM PUF and Synopsys PUF-Software

© 2025 Synopsys, Inc. 11

What is PUF?
A Silicon Fingerprint

A Physical Unclonable
Function

A Physical Object
which uses its

Unclonable Physical Properties
to create a

Unique Identifier

Intrinsic Security

100001011101100100011101101110110
101000111011011000001011010001111
011001100101100110011110111011011
000010011101101011110001110000101
110110010001110110111011010100011
101101100000101101000111101100110
010110011001111011101101100001001
110110101111000111011000111011001
011001110100000101110000101000111
011001110001110110110001110110010
110011101

Benefits of PUF-based
IDs/Keys
• Device-unique ID and keys
• Key not known outside the SoC
• Unclonable
• Not stored

Ideal for
• Tracking
• Identification / authentication
• Anti-counterfeiting
• Protection against reverse-

engineering

• SRAM, ring-oscillator
• Optical, Via, Quantum,

Magnetic, …

Various Types

© 2025 Synopsys, Inc. 12

PUF: Foundational Security
Keeping Secrets Secret and Data Secure

PUF

PUF Root Key

Encrypt data
(AI parameters/models, sensor data)

Vault for keys
(used in other applications; e.g. eWallet)

Authentication with other
systems or cloud

Bind FW IP to the SoC
(secure boot)

FW IP

© 2025 Synopsys, Inc. 13

SRAM PUF – Keys from Silicon Fingerprint

Process Variation

Deep sub-micron variations in the
production process give every transistor
slightly random electric properties

1

When the SRAM is powered on this
randomness is expressed in the start-up
values (0 or 1) of SRAM cells

SRAM Power-up Values2

• Device-unique, unclonable fingerprint • Leverages entropy of mfg. process • No key material programmed
SRAM PUF Benefits

SRAM PUF Key
The silicon fingerprint is turned into
a secret key that builds the
foundation of a security subsystem

4

The power-up values create a
highly random and repeatable
pattern that is unique to each chip

Silicon Fingerprint

3

© 2025 Synopsys, Inc. 14

Synopsys PUF-Software

• Software library, uses standard SRAM as a PUF to create a hardware-based trust anchor

• Main features:
– Device-unique ID
– Key provisioning
– Secure key storage
– Symmetric and asymmetric key cryptography
– Random number generation (NIST SP 800-90A/B)

PUF Enrollment – One-Time Process (at device provisioning)

R’ Synopsys
PUF - Software

SRAM PUF

Key Reconstruction – In the Field

Device-unique key

R Synopsys
PUF - Software

SRAM PUF Activation Code (AC)

PUF + Crypto Library

© 2025 Synopsys, Inc. 15

Wrap keys using Synopsys PUF-Software

• Root keys are re-created from the PUF each time they are needed  never stored
  stronger protection than traditional key storage in NVM

• We use these PUF root keys to wrap other keys

• Wrapping = encrypt + MAC + binding to the device

PUF-SWunwrap

With a key code retrieve a stored key

Key Code Plain Key

wrap PUF-SW

With a key create a keycode to securely store it

Plain Key Key Code

© 2025 Synopsys, Inc. 16

Improved Secure Boot Flow
Use SRAM PUF to improve the standard secure boot flow

© 2025 Synopsys, Inc. 17© 2025 Synopsys, Inc. 17

Typical Secure Boot Flow
MCUboot flow with encryption and ECDSA signature

1. Decrypt the firmware

2. Verify the hash

3. Verify the signature

• 2 main security assets:
– AES firmware encryption key
– ECDSA signature public key

Enc(image)

Signature

Compute
Hash

=
? Pass/fail

Check
integrity

Check
authenticity

Hash(Image)

Hash(Key)

AES
SymK

Decrypt

 Image

Verify
Signature Pass/fail

ECDSA
PubK

Hash(Key)

Decrypt

TLVs (FW + metadata)

© 2025 Synopsys, Inc. 18

General ideas

1. Protect the firmware encryption key
Wrap the symmetric key using PUF-SW (easy)

a) The network owner generates a symmetric key
b) They distribute it to each device during provisioning
c) Each device wraps the key with its own PUF

2. Prevent cloning
Wrap the public key using PUF-SW (easy)

a) The network owner generates a public/private key pair
b) They distribute the public key to each device during provisioning
c) Each device wraps the key with its own PUF

3. Improve performance (medium)
MAC = symmetric signature
Use an HMAC in place of the ECDSA signature
(and provide a solution to securely store the HMAC key)

AES
SymK

 Wrapped

ECDSA
PubK

 Wrapped

AES
SymK

ECDSA
PubK

Signature MAC

Verify
Signature Verify MAC

ECDSA
PubK

 Wrapped

HMAC
SymK

 Wrapped

© 2025 Synopsys, Inc. 19© 2025 Synopsys, Inc. 19

Improved secure boot flow
Encryption, ECDSA signature, keys wrapped with PUF-SW

First, the two easy steps

Keys wrapped with PUF-SW at
provisioning phase:

• Encryption symmetric key
• Signature public key

Pros
• Simple
• Protects against cloning
• Protects the two keys

Cons
• Slow boot sequence

Enc(image)

Signature

Compute
Hash

=
? Pass/fail

Check
integrity

Check
authenticity

Hash(Image)

Hash(Key)

AES
SymK

Decrypt

Decrypt Image

Verify
Signature Pass/fail

ECDSA
PubK

Hash(Key)

 Wrapped

 Wrapped

TLVs (FW + metadata)

© 2025 Synopsys, Inc. 20© 2025 Synopsys, Inc. 20

Improved secure boot flow
Naïve approach with HMAC

Pros
• Faster
• Simple
• Protects against cloning
• No need for asymmetric

crypto (smaller code size)

Cons
• Common key for all devices
• If the key is compromised,

attackers can forge valid
firmware images

Overall
Too big of a risk

Enc(image)

MAC

Compute
Hash

=
? Pass/fail

Check
integrity

Check
authenticity

Hash(Image)

Hash(Key)

AES
SymK

Decrypt

Decrypt Image

Verify MAC Pass/fail

HMAC
SymK

Hash(Key)

 Wrapped

 Wrapped

TLVs (FW + metadata)

© 2025 Synopsys, Inc. 21© 2025 Synopsys, Inc. 21

Improved secure boot flow
Hybrid approach, ECDSA + HMAC
At first boot sequence (verification)

• ECDSA at first verification

• Generate a device-unique MAC
key (and wrap it)

• Compute a MAC and store it next
to the FW image

• Use the MAC for subsequent
boot sequences

Pros
• Still fast
• Protects against cloning
• Device-unique MAC key

Cons
• Still requires asymmetric

crypto

Overall
We get the best of both worlds

Enc(image)

Compute
Hash

=
? Pass/fail

Check
integrity

Hash(Image)

Hash(Key)

AES
SymK

Decrypt

Decrypt Image

Verify
Signature Pass/fail

ECDSA
PubK

Hash(Key)

 Wrapped

 Wrapped

Signature

MAC

Generate HMAC key
and compute MAC

© 2025 Synopsys, Inc. 22© 2025 Synopsys, Inc. 22

Improved secure boot flow
Hybrid approach, ECDSA + HMAC
After first boot sequence

• ECDSA at first verification

• Generate a device-unique MAC
key (and wrap it)

• Compute a MAC and store it next
to the FW image

• Use the MAC for subsequent
boot sequences

Pros
• Still fast
• Protects against cloning
• Device-unique MAC key

Cons
• Still requires asymmetric

crypto

Overall
We get the best of both worlds

Enc(image)

Compute
Hash

=
? Pass/fail

Check
integrity

Hash(Image)

Hash(Key)

AES
SymK

Decrypt

Decrypt Image

Verify MAC Pass/fail

HMAC
SymK

Hash(Key)

 Wrapped

 Wrapped

Signature

MAC

ECDSA
PubK

 Wrapped

© 2025 Synopsys, Inc. 23

Efficient secure boot flow with SRAM PUF
Performance figures and code size

• On a Cortex-M0+:
STM32G070RB, with a basic unencrypted “Hello world” firmware payload

• This solution has also been implemented on other STM32 devices (Cortex-M0 and Cortex-M33)

Scenario Time to boot Time (at 64 MHz) Code size
Mbed TLS
Standard ECDSA flow

~62M clock cycles ~1s 43 kB

Synopsys PUF-SW
Same flow, faster crypto lib

~15M clock cycles ~250ms 42 kB

Synopsys PUF-SW HMAC
Hybrid HMAC flow,
after first verification

~600k clock cycles ~10ms 20 kB (HMAC-only)
42 kB (hybrid)

© 2025 Synopsys, Inc. 24

Secure Boot Flow for
Crownstone IoT devices
- Crownstone IoT device
- Lightweight Secure Boot Flow

© 2025 Synopsys, Inc. 25

Crownstone IoT device
Smart power outlet

• Nordic nRF52832 SoC
– 2.4 GHz transceiver
– Arm Cortex-M4 (32-bit, 64 MHz)
– 512 kB flash/64 kB RAM

• Use cases:
– Indoor localization
– Power Outlet Management

• Initially developed for private use (home),
now moving to large office space

© 2025 Synopsys, Inc. 26© 2025 Synopsys, Inc. 26

Secure Boot Flow for Crownstone
Encryption, ECDSA signature, keys wrapped with PUF-SW

Keys wrapped with PUF-SW at
provisioning phase:

• Encryption symmetric key
• Signature public key

Devices always on
 boot-time perf not an issue
 no HMAC-hybrid approach

Enc(image)

Signature

Compute
Hash

=
? Pass/fail

Check
integrity

Check
authenticity

Hash(Image)

Hash(Key)

AES
SymK

Decrypt

Decrypt Image

Verify
Signature Pass/fail

ECDSA
PubK

Hash(Key)

 Wrapped

 Wrapped

© 2025 Synopsys, Inc. 27

Conclusion

© 2025 Synopsys, Inc. 28

Conclusion

• Yes, we can improve the typical IoT secure boot flow with SRAM PUF

• Using SRAM PUF in an IoT secure boot flow brings benefits:
– Binds cryptographic key material to a device
– Secure key storage without a secure vault
– Faster boot time by using symmetric crypto
– Protection against firmware cloning

• Next steps in Resilient Trust:
– Continue the integration of PUF-SW on the Crownstone device
– Have a first integration working by the end of the year

Thank you

	SRAM PUF for secure firmware updates of IoT devices
	Introduction
	Agenda
	Context and motivations
	Context and motivations
	Secure Boot
	Typical Secure Boot Flow
	Main limitations
	Main limitations
	SRAM PUF overview
	What is PUF?
	PUF: Foundational Security
	SRAM PUF – Keys from Silicon Fingerprint
	Synopsys PUF-Software
	Wrap keys using Synopsys PUF-Software
	Improved Secure Boot Flow
	Typical Secure Boot Flow
	General ideas
	Improved secure boot flow
	Improved secure boot flow
	Improved secure boot flow
	Improved secure boot flow
	Efficient secure boot flow with SRAM PUF
	Secure Boot Flow for �Crownstone IoT devices
	Crownstone IoT device
	Secure Boot Flow for Crownstone
	Conclusion
	Conclusion
	Slide Number 29

