Secure compilation
with the compiler, not against

First experiments on “Tracing LLVM”

Sébastien MICHELLAND (UGA/LCIS, Valence)
PHISIC 2025 — May 20th, 2025

UGA

Université
Grenoble Alpes

FRANCE PROGRAMME
DE RECHERCHE

20

Uncertainties and incompleteness Use lowest-level models possible Semantics and secure compilation Conclusion
o 000 00000 o

Uncertainties and
incompleteness

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 1/19

Uncertainties and incompleteness
°

Fault injections are already way out of the comfort zone

Fault Modeled by Fault Countered by Counter- Guarantees Security
injections models measures properties

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 2/19

Uncertainties and incompleteness
°

Fault injections are already way out of the comfort zone

Fault Modeled by Fault Countered by Counter- Guarantees Security
injections models measures properties
Future Inherently Lack of

. . Weaknesses e
evolutions? approximate specification

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 2/19

Uncertainties and incompleteness
°

Fault injections are already way out of the comfort zone

Fault Modeled by Fault Countered by Counter- Guarantees Security
injections models measures properties

Future Inherently Lack of

evolutions? approximate Weaknesses specification

Multi-fault Targeted

injections attacks

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 2/19

Uncertainties and incompleteness
°

Fault injections are already way out of the comfort zone

Use lowest-level

My Ph.D: . Semantics and secure compilation
models possible
Fault Modeled by Fault Countered by Counter- Guarantees Security
injections models measures properties
Future Inherently Lack of
: - Weaknesses e
evolutions? approximate specification
Multi-fault Targeted
injections attacks

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 2/19

Uncertainties and incompleteness Use lowest-level models possible Semantics and secure compilation Conclusion
o 000 00000 o

Use lowest-level models possible

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 2/19

Use lowest-level models possible
®00

Precise attack models are low-level and tricky

@ Fetch skips by Alshaer et al. [Als+22]

» Found on ARM and RISC-V

c.addi a0, a0, 1 1w a9, 144(al) » Can corrupt instructions
(1w cont.) c.ret » Can affect more than one instruction
Vv Skip 32 bits! Typical abstraction compromise!
e-addi—a0-—a0—+ Tw—a0—H44laty » Brings in pipeline details
) » More precise than instruction skip
addi s2, s2, 1 c.ret .
» Harder to deal with

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 3/19

Use lowest-level models possible
oceo

But co-design can deal with them!
Paper: From low-level fault modeling to a proven hardening scheme — CC'24 [MDG24]

Co-designed countermeasure with nice properties!

o0

From low-level fault modeling (of a pipeline attack) to
a proven hardening scheme

Christophe Deleuze

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 4/19

Use lowest-level models possible
oceo

But co-design can deal with them!
Paper: From low-level fault modeling to a proven hardening scheme — CC'24 [MDG24]

Co-designed countermeasure with nice properties!

From low-level fault modeling (of a pipeline attack) to

» Simple implementation on both ends spwenlaseuiugachems

» HW computes checksum of executed opcodes
> SW tests it before every jump

» Formalized and proven

> Attacks will crash or be detected quickly

» Reasonable performance

> For a strong attacker, 10% time, 2.5x space
> Usual instruction skip CM are 4x time/space

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 4/19

Uncertainties and incompleteness Use lowest-level models possible ntics and secure compilation Conclusion

[ele] }

Still, we can’t be just low-level.

The security property is just “normal behavior or exception”.
» What about denial of service? Real-time violations? Data leaks?

> Also not everything needs to be protected...

Requirement:

» Source should be able to provide security annotations.

Often missing at the SW/HW interface
» Most hardware countermeasures against faults only do functionality

» Also a social problem!

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 5/19

Uncertainties and incompleteness Use lowest-level models possible Semantics and secure compilation Conclusion
o 000 00000 o

Semantics and secure compilation

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 5/19

Semantics and secure compilation
©0000

There is an abstraction gap between attacks and requirements...

Programmer

C source code

l Compiler
LLVM IR

SelectionDAG
Machine IR
Object code

Libraries Runtime
£ Linker
Executable code

'

Execution

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 6/19

Semantics and secure compilation
©0000

There is an abstraction gap between attacks and requirements...

Programmer

C source code

l Compiler
LLVM IR

SelectionDAG
Machine IR
Object code

Libraries Runtime
£ Linker
Executable code

¢ <— Accurate model of the attack
Execution <— Real attack

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 6/19

Semantics and secure compilation
©0000

There is an abstraction gap between attacks and requirements...

Programmer

C source code <— User's security requirements

l Compiler
LLVM IR

SelectionDAG
Machine IR
Object code

Libraries Runtime
£ Linker
Executable code

¢ <— Accurate model of the attack
Execution <— Real attack

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 6/19

Semantics and secure compilation
©0000

There is an abstraction gap between attacks and requirements...

Programmer
C source code <— User's security requirements
l Compiler
LLVM IR
SelectionDAG
Machine IR Countermeasure somehow
. needs to work through
Object code &
all these.
Libraries Runtime
£ Linker
Executable code
¢ <— Accurate model of the attack
Execution <— Real attack

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 6/19

Uncertainties and incompleteness Use lowest-level models possible Semantics and secure compilation Conclusion

(o] Jelele]

... which only the compiler can properly deal with.

Typically:
» Harden everything; no control from source code like annotations
» Harden close to source; no control of assembly (and pray for -00 to work)

> Tricks to avoid breakage: volatile abuse, inline assembly, disable passes...

Glaringly insufficient: subtle bugs, no formal guarantees, always a pain.

Tracing LLVM: extension of LLVM, currently focused on RISC-V
» Adds semantic tools that preserve and trace elements of the program
» (Ongoing) Provides an API for querying and accessing traced objects

» |s intended to be used as a “countermeasure toolbox”

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 7/19

Semantics and secure compilation
00800

Tracing demo #1: types

Types capture data-flow and are very strong in C and LLVM IR!

unsigned char ! __attribute__((trace(dataflow))) cardPin[4];

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 8/19

Semantics and secure compilation
00800

Tracing demo #1: types

Types capture data-flow and are very strong in C and LLVM IR!

unsigned char ! __attribute__((trace(dataflow))) cardPin[4];

» Traced type constructor “T!"—secretly the identity

» Here we trace the downstream dataflow of cardPin

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 8/19

Uncertainties and incompleteness Use lowest-level models possible Semantics and secure compilation Conclusion

[e]e] Tele]

Tracing demo #1: types

Types capture data-flow and are very strong in C and LLVM IR!

unsigned char ! __attribute__((trace(dataflow))) cardPin[4];

» Traced type constructor “T!"—secretly the identity

» Here we trace the downstream dataflow of cardPin

What does this do?
» Taint expressions that depend on cardPin in the front-end
» Generate code that can't be rewritten without explicit approval

» Tag until Machine IR, where we can cleanup all relevant registers

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 8/19

Semantics and secure compilation
0000

Tracing demo #2: wrappers

int ! __attribute__((trace(writes))) valid;
valid = FALSE;

» Traces writes to valid, requiring that they occur exactly as written

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 9/19

Semantics and secure compilation
0000

Tracing demo #2: wrappers

int ! __attribute__((trace(writes))) valid;
valid = FALSE;
» Traces writes to valid, requiring that they occur exactly as written

LLVM IR
simplewrapper void 1 2 closed ; hides the store
store 132 85, ptr %valid

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 9/19

Uncertainties and incompleteness e evel models possible Semantics and secure compilation Conclusion

[e]e]e] Je]

Tracing demo #2: wrappers

int ! __attribute__((trace(writes))) valid;
valid = FALSE;
» Traces writes to valid, requiring that they occur exactly as written

LLVM IR
simplewrapper void 1 2 closed ; hides the store
store 132 85, ptr %valid

RISC-V Assembler
1i a0, 85

» ... and optimizations cannot touch this even if we enable them!
* except some late back-end locations where there are no wrappers

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM’ 9/19

Uncertainties and incompleteness

>west-level models possible Semantics and secure compilation Conclusion
oooo0e

Getting strong countermeasures from tracing

(work currently under review)

| use Tracing LLVM to build a secure verifyPIN function with:
» Basic data-flow integrity (double loads)
» Basic control-flow integrity (Step Counter Incrementation)
> All sensitive data allocated in registers

» Sensitive registers zeroed at exit of function

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 10/19

Uncertainties and incompleteness west-level models possible

Semantics and secure compilation Conclusion
oooo0e o

Getting strong countermeasures from tracing

(work currently under review)

| use Tracing LLVM to build a secure verifyPIN function with:

» Basic data-flow integrity (double loads) — Source
» Basic control-flow integrity (Step Counter Incrementation) — Source
> All sensitive data allocated in registers — Assembly
» Sensitive registers zeroed at exit of function — Assembly

Can have both source annotations and precise assembly code!

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 10/19

Uncertainties and incompleteness Use lowest-level models possible Semantics and secure compilation Conclusion
o 000 00000 o

Conclusion

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 10/19

Conclusion
°

Secure compilation:
with the compiler, not against

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 11/19

Conclusion
°

Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!

2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 11/19

| models ible antics a secure compilation Conclusion
) [

Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!

2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

Take-away messages!
» Use the compiler to connect high-level requirements to low-level secure code
» Position: we should also do that with SW/HW co-design!

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 11/19

| models ible antics a secure compilation Conclusion
) [

Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!

2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

Take-away messages!
» Use the compiler to connect high-level requirements to low-level secure code
» Position: we should also do that with SW/HW co-design!

Questions?

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 11/19

Related work

» Son Tuan Vu's Ph.D [Vu21] (with Karine Heydemann)

much of the same pitch, but only preserves passive observations—within the semantics

» The Correctness-Security Gap in Compiler Optimization [DPS15] (2015);
What You Get is What You C [SCA18] (2018)

earlier dives into the fundamental challenges in secure compilation

» CompaSeC [Gei+23] (a combined control- and data-flow protection)

showcases how hard it is to compose countermeasures, thus the need to prove

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 12/19

References
00000

References I

[Als+22]

[DPS15]

[Gei+23]

Ihab Alshaer et al. “Variable-Length Instruction Set: Feature or Bug?" In: 2022 25th
Euromicro Conference on Digital System Design (DSD). Maspalomas, Spain. IEEE, 2022.
ISBN: 978-1-6654-7405-4. DO1: 10.1109/DSD57027.2022.00068.

Vijay D'Silva, Mathias Payer, and Dawn Song. “The Correctness-Security Gap in Compiler
Optimization”. In: 2015 |IEEE Security and Privacy Workshops. 2015, pp. 73-87. po:
10.1109/SPW.2015. 33.

Johannes Geier et al. “CompaSeC: A Compiler-Assisted Security Countermeasure to Address
Instruction Skip Fault Attacks on RISC-V". In: Proceedings of the 28th Asia and South
Pacific Design Automation Conference. ASPDAC '23. Tokyo, Japan: Association for
Computing Machinery, Jan. 2023, pp. 676-682. 1sBN: 9781450397834. DOI:
10.1145/3566097.3567925. URL: https://doi.org/10.1145/3566097.3567925.

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 13/19

https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1145/3566097.3567925
https://doi.org/10.1145/3566097.3567925

References
00000

References I1

[MDG24] Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. “From low-level fault
modeling (of a pipeline attack) to a proven hardening scheme”. In: Compiler Construction
(CC’24). Edinburgh (Scotland), United Kingdom, Mar. 2024. por:
10.1145/3640537.3641570. URL: https://hal.science/hal-04438994.

[SCA18] Laurent Simon, David Chisnall, and Ross Anderson. “What You Get is What You C:
Controlling Side Effects in Mainstream C Compilers”. In: 2018 |IEEE European Symposium
on Security and Privacy (EuroS&P). 2018, pp. 1-15. DOI: 10.1109/EuroSP.2018.00009.

[Vu21] Son Tuan Vu. “Optimizing Property-Preserving Compilation”. Thése de doctorat dirigée par
Heydemann, Karine et Cohen, Albert Henri Informatique Sorbonne université 2021.
PhD thesis. Sorbonne Université, 2021. URL: http://www. theses.fr/2021S0RUS435.

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 14/19

https://doi.org/10.1145/3640537.3641570
https://hal.science/hal-04438994
https://doi.org/10.1109/EuroSP.2018.00009
http://www.theses.fr/2021SORUS435

References
© #0000

Fetch skips hardening: validation

MiBench benchmarks

1. Exhaustive skip) Attack succeeded (0)

Attack detected (~75%)
Segfault
Other crash

2. Exhaustive double-skip
3. Exhaustive skip-and-repeat
R

. 2000 random multi-faults A N N I
1 23R 1 23R
bitcount blowfish
(3015 faults) (3371 faults)

» 9 programs, 32’000 attacks reached, 0 bypass (0 checksum collision)
» Cost: ~10% time, average x2.46 space (similar work: x5 time and space)

These are very good because of the software/hardware combo!

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 15/19

References
© 08000

Fetch skips hardening implementation

» Fetch Skips Hardening is presented as an assembly transform, but...

clang

| C source code |

, LLVM
LLVM IR

SelectionDAG

Machine IR)))
[«— Static relaxation: code size bounded

Object code I~

| MachineFunctionPass: adds orange/red blocks

Emitter: Late jump expansion + relocation emission
Libraries Runtime
, | GNU 1d

| Executable code |<— Relocation: Checksum computation 4+ some fixing

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 16/19

References
© 00800

Model of multi-pass hardening

Hardening process Security properties
Programmer
. . satisfies
Security annotation ——— C source code — 5
“well-annotated”
Lower annotations .
Compiler ;
. satisfies
Start hardening ——> LLVM IR —_— 5
satisfies
. H é
Lower annotations, SelectionDAG S3
preserve security Machine IR
Continue hardening —— Object code
Lower annotations, Libraries Runtime

preserve security

l Linker
satisfies

Finish hardening —— Executable code ——> Sy
“resists attack”

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 17/19

References
© 00080

Security properties of fetch skips hardening

Front-end
Middle-end FSH Relaxation FSH-verif p Emitter p Linker
src 1 provable 2 277 3 Trecovers ' 4 5 exe
(%] %] n [0} (%] %] n
QL o 9 o o QL 9
R & & & Rl R &
= = = g= = = =
@ b p t a @ b
True True Blocks have True Blocks have Exit widgets Exit widgets
exit widgets exit widgets (relocations) (checksums)
(MachinelR) (MachinelR)
After fetch skip, imPlies

stops before end of block
» Almost never talks about fetch skips.

PHISIC 2025 (Gardanne, 2025-05-20)

Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 18/19

References
ocoooe

... leading to some of the most robust guarantees

» To reason about the attack, extend the semantics of assembler!
» Describe how fetches work to clear the abstraction gap

» Fetch rules (right): describe fetches + attacks

NOFAULT
» Step rules (not shown): decoding/execution (PC.p) 2= [4] (PC.[a])
Proven security guarantee 1<k<N

(PC,p) a = [a+ 4k] (PC + 4k, [a + 4K])

If you fetch skip, the program will stop/crash before
the end of the current block. p# [

Multi-fault attacks too (unless checksum collision—

. : (PC.p) a=p (PC [a])
usually impossible).

PHISIC 2025 (Gardanne, 2025-05-20) Secure compilation—with the compiler, not against: first experiments on 'Tracing LLVM' 19/19

	Uncertainties and incompleteness
	Use lowest-level models possible
	Semantics and secure compilation
	Conclusion
	Appendix
	References

